

51. Österreichische Chemieolympiade Landeswettbewerb

8. April 2025 Theoretischer Teil

Platznummer: _____

Problem A Multiple Choice	7 Punkte
Problem B Alles Mögliche rund um wichtige Dreifachbindungen	13 Punkte
Problem C Pigmente	16 Punkte
Problem D Aroma- und Geruchsstoffen im Kaffee auf der Spur	9 Punkte
Problem E Zwei Synthesen	15 Punkte

Problem A 7 Punkte

Multiple Choice

Von den angebotenen Antworten/Feststellungen ist jeweils genau <u>eine</u> anzukreuzen!

a.	Welche Salzf	formel ist keine Ko	ombination dieser	Ionen: Pb ⁴⁺ , Pb ²⁺ ,	Ag ⁺ , Cl ⁻ , S ²⁻ , N ³⁻ ?
	PbS	PbS ₂	Pb ₂ N	Ag ₂ S	Pb ₃ N ₄
b.	Beschrieben	sind vier Nuklide.	. Welche sind Isoto	ppe des selben Ele	mentes?
	$X_1: Z = 14$	N = 16	$X_2: A =$	34, Z = 16	
	$X_3: Z = 14$	A = 28	$X_4: A =$	34, N = 20	
	alle		X ₁ , X ₃ , X ₄	X ₂ , X ₃ , X ₄	keine
c. vei					² He ²⁺), andere Zerfälle eht aus ²³⁸ U das ²⁰⁶ Pb ?
	gar nicht	2	3	5	8
d. En		-	•	•	s Komplexbildner zum hosphorsäure ist $P_3O_{10}^{3-}$
e. Scł	Bei welcher nwefelwassers		Reaktionen entste	ht das nach faulen	Eiern riechende Gas
	A: Aluminiun	nsulfat + Perchlor	säure		
	B: Eisen(II)-s	ulfid + Salzsäure			
	C: Verbrenne	n von elementare	m Schwefel		
	D: Erhitzen v	on Zink + Schwefe	el		
	E: Natriumsu	lfit + Schwefelsäu	ire		
	A	В	C	D	E

	/on welcher d	er Verbindungen	existieren geom	etrische Isomere (<i>E/</i>	<i>Z</i> -Isomere)?
1 1	1,1- Dichlorethan	1,1- Dichlorethen	1,1,2- Trichloreth	1,2- Dichlorethan	1,2- Dichlorethen
g. I	Ourch eine sta		ng zerfällt Ammon → b H₂O +	niumnitrat gemäß fol $oldsymbol{c} N_2 \ + \ oldsymbol{d} O_2$	gender Gleichung:
In de	r korrekt ahø		_	peffizienten a, b, c, d	
	1,2,1,1	2,2,1,1	1,2,2,1	2,4,2,1	2,4,1,2
h. V	Welche/r der l	beschriebenen Vo	orgänge stellt/ste	llen eine Oxidation d	ar?
		zu N ₂ umgesetzt		rd zu VO ₃ - umgesetz	
		zu Cl- umgesetzt zu N ₂ umgesetzt	D: CrO ₄ ²⁻ v	vird zu Cr ₂ O ₇ 2- umge:	setzt
	A , B und D	nur B	nur D	B und E	nur E
i. N	Mit welcher Ge		n mol·L ⁻¹ ·min ⁻ ₂ H ₄ + N ₂ O ₄ → 3 N	(1) wird N_2 nach der (1) + 4 H_2 0	Gleichung
gebil	det, wenn N ₂ F),12 mol \cdot L $^{-1}$ \cdot min $^{-1}$	verbraucht wird?
_				·	
	0,08	0,12	0,18	0,24	0,36
ј. Е	Eine 25%ige (.		x-Lösung hat bei 2	20°C eine Dichte von	0,36 0,903 g/cm ³ . Welche
j. E Mass	Eine 25%ige (.	<i>m/m</i>) Ammoniak	x-Lösung hat bei 2	20°C eine Dichte von	
j. E Mass k. C	Eine 25%ige (e Ammoniak i 0,9030 g Gegeben sind o	m/m) Ammoniak ist in einem Liter 903,0 g drei Reaktionsen	thalpien A → 2C -	20°C eine Dichte von alten? 250,0 g $ \begin{array}{ccc} 250,0 & & \\ $	0,903 g/cm³. Welche 225,8 g kJ/mol kJ/mol
j. E Mass k. C	Eine 25%ige (e Ammoniak i 0,9030 g Gegeben sind o	<i>m/m</i>) Ammoniak ist in einem Liter 903,0 g	thalpien A → 2C -	20°C eine Dichte von alten? 250,0 g $ \begin{array}{ccc} 250,0 & & \\ $	0,903 g/cm³. Welche 225,8 g kJ/mol kJ/mol
j. F Mass k. C	Eine 25%ige (te Ammoniak i 0,9030 g Gegeben sind o lie Reaktion D – 100 Ein Gefäß (m_{Ta} Kolben evakui	m/m) Ammoniakist in einem Liter 903,0 g drei Reaktionsen + A \rightarrow 4C ist dan - 60 $a_{ra} = 250$ g) wurd dert und danach i	ta-Lösung hat bei Z der Lösung enthaler der Lösung enthaler $A \rightarrow B \rightarrow 2C - D$ an $\Delta_R H$ (in kJ/moler $A \rightarrow B \rightarrow C$ der Lösung enthaler $A \rightarrow C$ der Lösung hat bei $A \rightarrow C$ der Lösung h	20°C eine Dichte von Alten? 250,0 g $ \begin{array}{ccc} 250,0 & & \\ 2B & \Delta_R H = +4 \\ C & \Delta_R H = -5 \\ A_R H = -20 \end{array} $): $ \begin{array}{cccc} -40 & & \\ \end{array} $ vorauf $m_{\text{gesamt}} = 281$	$0,903 \text{ g/cm}^3$. Welche $225,8 \text{ g}$ 0 kJ/mol 0 kJ/mol 0 kJ/mol $+60$ $0 \text{ betrug. Dann wurde}$ $0 math math math math math math math math$

Problem B 13 Punkte

Alles Mögliche rund um wichtige Dreifachbindungen

Diese Aufgabe dreht sich um Teilchen mit Dreifachbindungen, nämlich Cyanwasserstoff HCN, Dicyan (CN) $_2$, Ethin H_2C_2 , Kohlenstoffmonoxid CO und Stickstoff N_2 .

a) Zeichnen Sie für die Moleküle Lewisstrukturen samt nicht-bindender Elektronenpaare.				
HCN	(CN) ₂	H_2C_2	СО	N ₂

Das HCN-Molekül besitzt ein Dipolmoment, damit ist **Cyanwasserstoff** (Blausäure) eine Flüssigkeit (Siedepunkt bei 1,013 bar: 26° C) und mit Wasser in jedem Verhältnis mischbar. Die Substanz reagiert sauer mit p $K_a = 9,40$.

o i a ,
b) Kennzeichnen Sie die Enden des Dipols durch + bzw in den Kreisen.
○ HCN ○
c) Berechnen Sie den pH-Wert einer wässrigen Lösung von HCN mit $c_0 = 0.125 \text{ mol } L^{-1}$
Blausäure und ihre Salze, die Cyanide, sind sehr giftig. HCN kommt in Steinobstkernen, wie z.B.

Blausäure und ihre Salze, die Cyanide, sind sehr giftig. HCN kommt in Steinobstkernen, wie z.B. Mandeln, Marillen-, Pfirsich- oder Kirschkernen vor. Die geringste toxische Dosis TD_{Lo} für orale Aufnahme von HCN beträgt 1,47 mg/kg Körpermasse für Menschen. In für den Endverbraucher bestimmten Mandeln beträgt der erlaubte Höchstwert an HCN 35 mg/kg Mandeln.

<i>d</i>)	Welche Masse an Nerzehren, ohne dass		darf eine	75 kg	schwere	Person

Ein Grund für die Giftwirkung von Cyanid ist seine hohe Fähigkeit als Ligand für Metallionen zur wirken. So bindet es in Zellen an das Eisenatom der Cytochrom-c-Oxidase und blockiert so die Zellatmung. Betrachten wir hier zunächst drei Cyanido-Komplexe.

e) Ergänzen Sie in der folgenden Aufstellung richtig Formel, Namen, Oxidationszahl				
K ₃ [Ti(CN)]	Kaliumcyanidotitanat(III)			
Na[Au(CN) ₂]	dicyanidoaurat()			
[Ni ₂ (CN) ₆]	Magnesiumhexacyanidodinickelat(I)			
f) Welche Molekülgeometrie ist beim Ti-CN-Komplex zu erwarten?				

Der Gold-Cyanid-Komplex spielt in der Cyanidlaugerei, einem älteren industriellen Verfahren zur Goldgewinnung eine Rolle. Goldhaltiger Staub wird dabei in einer wässrigen Lösung mit Luftzutritt zu besagtem Komplex umgesetzt. In einem 2. Schritt wird der Goldkomplex mit Zn zu Rohgold reduziert.

g) Schreiben Sie die kleinsten ganzzahligen stöchiometrischen Faktoren auf die Striche v den Formeln (schreiben Sie auch "1", sofern dies zutrifft).	or
$_$ Au + $_$ O ₂ + $_$ H ₂ O + $_$ NaCN \rightarrow $_$ Na[Au(CN) ₂] + $_$ NaOH	
$_$ Na[Au(CN) ₂] + $_$ Zn \rightarrow $_$ Na ₂ [Zn(CN) ₄] + $_$ Au	

Beim **Ethin (Acetlyen)** ist im Gegensatz zu Dicyan die Dreifachbindung in der Molekülmitte positioniert. Das Ethinmolekül hat eine Länge von 332 pm, die C-H-Bindung ist 106 pm lang.

L	Cohom	Cia da	V.	a batan d	1 2 2 2 1	haidan	C 1tores	:		
n_{j}) Geben	Sie ae.	n Kern	abstana	aer t	oeiaen	C-Atome	In	рm	an.

Acetylen ($pK_a \approx 25$) ist deutlich saurer als andere Kohlenwasserstoffe. Es ist in der Lage, Salze mit dem Ion C_2^{2-} (Acetylide) zu bilden. Das ist für die (ältere) Acetylensynthese von großer Bedeutung. Dabei wird Calciumcarbonat mit Koks (C) bei 2200°C zur Reaktion gebracht. Es entstehen Calciumcarbid und ein anderes Gas, von dem diese Aufgabe handelt. Das Calciumcarbid wird mit Wasser zu Ethin und Calciumhydroxid umgesetzt.

i) Schreiben Sie abgestimmte Gleichungen für die beiden Reaktionen auf.
Bildung von CaC ₂ :
Bildung von Ethin:

"Kohlenmonoxid", besser **Kohlenstoffmonoxid**, dient seit tausenden von Jahren als Reduktionsmittel zur Herstellung von Metallen, auch wenn die Menschen lange Zeit keine

Ahnung von der Chemie dahinter hatten. Die Bildung von CO erfolgt durch unvollständiges Verbrennen von Kohlenstoff (Koks), wobei bei niedriger Temperatur CO_2 entsteht, das dann mit C Kohlenstoffmonoxid bildet. Dies ist das berühmte Boudouard-Gleichgewicht:

$$CO_2(g) + C(s) \rightleftarrows 2 CO(g)$$

Die Lage des Gleichgewichts ist von der Temperatur abhängig, wie die Tabelle für einen Druck von 1 bar zeigt.

T/°C	$x(CO_2)/\%$	x(CO)/%
450	98	2,0
600	77	23
700	42	58
800	6,0	94
900	3,0	97
1000	1,0	99

j) Geben Sie die Partialdrücke der beiden Gase bei 800°C in bar an.
k) Berechnen Sie die Gleichgewichtskonstante K_p bei 800°C für das Boudard-Gleichgewicht.

Kommen wir zu guter Letzt zum **Stickstoff**. Dessen Dreifachbindung hat eine Dissoziationsenergie von $+942~kJ\cdot mol^{-1}$. Obwohl Stickstoffverbindungen vielfach exotherm aus den Elementen gebildet werden, ist N_2 bei Raumtemperatur sehr reaktionsträge, da die Dreifachbindung schwer spaltbar ist.

Am Beginn des 20. Jahrhunderts fanden Fritz Haber und Carl Bosch eine Methode, Luftstickstoff mit Wasserstoff bei bestimmten Bedingungen zu Ammoniak umzusetzen. Aus diesem konnten dann andere Stickstoffverbindungen hergestellt werden. Einerseits für Dünger, in denen der Stickstoff für Pflanzen zugänglich ist, andererseits leider auch für Spreng- und Schießstoffe.

$$N_{2(g)} + 3 H_{2(g)} = \frac{500 \,^{\circ}\text{C}, 300 \,\text{bar}}{\text{Fe}_{3}O_{4}, \text{Al}_{2}O_{3}} 2 \,\text{NH}_{3(g)}$$

Für diese Reaktion sind $\Delta_r H^o = -92.3 \text{ kJ mol}^{-1} \text{ und } \Delta_r S^o = -198.3 \text{ J mol}^{-1} \text{K}^{-1}$. Diese Daten gelten für die Standardtemperatur von 298 K und sollen hier als temperaturunabhängig betrachtet werden.

l) Geben Sie die Standard-Gibbsenergie	$\Delta_r G^0$ bei 298 K an. Wo liegt das Gleichgewicht?
O Gleichgewicht liegt links	O Gleichgewicht liegt rechts
8 8	0 0
Man arbeitet aber bei 500°C, um die Reak	tionsgeschwindigkeit zu erhöhen.
m) Geben Sie die Standard-Gibbsenergie	$e\Delta_r G^0$ bei der Reaktionstemperatur an.
) Boundhous Cir V, hai F000C Walington	intert des Chieles escripto?
n) Berechnen Sie K _p bei 500°C. Wo liegt	jetzt das Gielengewicht?
O Gleichgewicht liegt links	O Gleichgewicht liegt rechts

Betrachten wir schließlich das Gleichgewicht mit Hilfe einer Bilanztabelle.

$$N_2(g) + 3 H_2(g)$$
 \rightleftharpoons $2NH_3(g)$

Man geht von einem stöchiometrischen Ansatz in der Ammoniaksynthese aus, also 3 mol H_2 und 1 mol N_2 . Bis ins Gleichgewicht setzen sich a mol N_2 bei einem Druck von p_g um.

o) Füllen Sie die folgende Bilanztabelle aus.							
	N_2	H ₂	NH ₃				
n_0	1	3	0				
Δn	-a						
$n_{ m eq}$				$n_{\rm g} = 4 - 2a$			
$x_{ m eq}$							
$p_{ m eq}$							

p) Der richtige Ausdruck für K_p lautet dann (Kreuzen Sie an.)							
$K_p = \frac{4a^2(4-2a)^2}{27p_g^2(1-a)^3} \qquad K_p = \frac{4a^2(4-2a)^2p_g^2}{27(1-a)^4}$							
K_{i}	$T_p = \frac{4a^2(4-2a)^2}{27p_g^2(1-a)^4}$		$K_p = \frac{27p_g^2(4-2a)^2}{4a^2p_g^4(1-a)^4}$				

Problem C 16 Punkte

Pigmente

Pigmente (von lat. *pigmentum* – Farbe, Schminke) meint hier "in der Anwendnungsmatrix unlösliche Färbemittel". Denkt man also etwa an Wasserfarben, so liegen Pigmente als fein verteilte Feststoffe im Lösungsmittel Wasser vor.

a) So eine Mischung nennt man (Kreuzen Sie richtig an.)								
☐ Lösung	☐ Paste	☐ Suspension	☐ Emulsion					

Pigmente werden weltweit jährlich im Millionen Tonnenmaßstab hergestellt und vermarktet, daher zahlt es sich aus, einige Pigmente etwas näher zu betrachten.

Rätselhaft: 4 anorganische Pigmente A, B, C und D

<i>b)</i>	b) Verwenden Sie die unten stehenden Angaben, um das Rätsel zu lösen, und füllen Sie die Tabelle entsprechend aus.						
	Pigment Name	Farbe					
A							
В							
С							
D							
	chemischer Name (Kationen aus Nebengr. mit Oxzahl)	Formel					
A							
В							
С							
D							

- Die Pigmente sind blau, rot, gelb und weiß.
- A heißt Cobaltblau.
- **D** (323,92 gmol⁻¹) ist das Vanadat eines Kations aus Gruppe 15 des PSE.
- Eines der Pigmente besteht aus 33,31% Co, 30,51% Al und 36,18% O.
- Kreide hat die Formel CaCO₃.
- Ein Pigment heißt Vanadiumgelb.
- Cobalt(II)-aluminat ist nicht rot.
- **B** wird in der Schule häufig verwendet.
- Zinnober ist eine binäre Verbindung (232,65 gmol⁻¹), aus der sich ein Metall (200,59 gmol⁻¹) gewinnen lässt.
- VO₄³⁻ heißt Vanadat

Giftig: Bleiweiß und Chromgelb

Bleiweiß ist ein basisches Pigment, das neben Pb²⁺-Ionen auch Hydroxid- und Carbonat-Ionen enthält. Löst man 1,500g Bleiweiß in einem Überschuss an Salpetersäure, so erhält man 94,60 mL eines Gases (bei 101300 Pa und 298K) sowie nach Abdampfen sämtlichen Wassers 1,922 g Blei(II)-nitrat (M= 331,22 gmol⁻¹)

c) Geben Sie Formel und Stoffmenge des entstandenen Gases an.
d) Cohon Sia Formal und Staffmanga das antstandanan Plai (II) nitrats an
d) Geben Sie Formel und Stoffmenge des entstandenen Blei(II)-nitrats an.
e) Geben Sie die Formel von Bleiweiß an, beweisen Sie durch Berechnung, dass sie mit den Angaben oben übereinstimmt.
f) Geben Sie die Formel und die Farbe des Salzes an, das entsteht, wenn man Bleiweiß statt mit Salpetersäure mit Schwefelsäure behandelt.
Chromgelb enthält ebenfalls Blei, denn es handelt sich um Blei(II)-chromat. In dessen Anion findet sich Chrom(VI) ganz ähnlich wie Schwefel(VI) im Sulfat.
g) Zeichnen Sie eine Lewis-Formel für das Chromat CrO4 ²⁻ -Ion einschließlich formaler Ladungen und nichtbindender Elektronenpaare.
h) Den Chromaten liegt die Chromsäure zu Grunde. Geben Sie deren Formel an.
II) Den Chi omaten negt die Chi omsadi e zu di dide. Geben sie dei en Poi mei an.
i) Geben Sie die vollständige Elektronenkonfigurationen von Chrom(VI) und Schwefel an.
Cr ⁶⁺
S

Einst teuer: Ultramarinblau

Seit Jahrhunderten bekannt ist Ultramarinblau, das - bevor man es synthetisch herstellen konnte – sehr teuer war. Lapis Lazuli wurde dafür gepulvert. Dessen Hauptbestandteil Lasurit ist ein komplexes Na-Al-Silikat. Für die Farbe verantwortlich sind die Polysulfid-Radikal-Anionen, S_3^- .

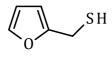
. 0
<i>j)</i> Welchen Wert muss x in der Formel Na ₇ Ca(Al _x Si ₆ O ₂₄)(SO ₄)(S ₃) · H ₂ O haben?
X =
k) Wie viele Protonen und wie viele Elektronen besitzt S_3^- insgesamt?
Protonen: Elektronen:
l) Zeichnen Sie eine Lewis-Formel dieses Ions (nicht-bindende Paare, formale Ladungen)

Nicht giftig, ganz alt: Umbra

Bereits die ältesten Malereien an Höhlenwänden enthalten Eisenpigmente, zum Beispiel Umbra, eine Mischung aus Fe_2O_3 , MnO_2 und Bestandteilen wie SiO_2 .

Eine Umbraprobe ($m_{\text{Probe}} = 1,093 \, \text{g}$) wird untersucht und mit konzentrierter Salzsäure aufgeschlossen, wobei sich Fe₂O₃ (159,70 gmol⁻¹) und MnO₂ (86,94 gmol⁻¹) lösen und ein unlöslicher Rückstand mit $m = 0,3388 \, \text{g}$ verbleibt. Durch Rücktitration wurde festgestellt, dass für das Auflösen von Eisen- und Manganoxid 28,98 mmol HCl verbraucht wurden. Der Versuch wurde natürlich im Abzug durchgeführt wegen des entstehenden giftigen Gases.

m) Geben Sie Formel und Namen des giftigen Gases an.
my deben sie i ormer und wamen des griegen dases an.
n) Vervollständigen Sie die Gleichungen für die Reaktionen der farbgebenden Umbrabestandteile mit der Salzsäure
$Fe_2O_3 + 6 HCl \rightarrow$
$MnO_2 + 4 HCl \rightarrow$
o) Geben Sie den Massenanteil der in HCl unlöslichen Umbrabestandteile in % an.
p) Berechnen Sie die Massenanteile von Fe_2O_3 und MnO_2 in der untersuchten Umbra-Probe. Vergessen Sie nicht, deren unlösliche Bestandteile zu berücksichtigen.

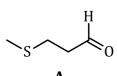

Aufgabe) verwendet. Nach der Reaktion wurde die Probe in einen 250 mL-Messkolben transferiert, aufgefüllt, homogenisiert und dann wurden Aliquote von 20,00 mL mit NaOH ($c_{\text{NaOH}} = 0.2500 \text{ mol/L}$) titriert. Das durchschnittliche Titrationsvolumen betrug 22,73 mL
q) Geben Sie die Stoffmenge der in einer Titration von der NaOH neutralisierten HCl an.
r) Berechnen Sie c _{HCl,} die Konzentration ursprünglich für den Aufschluss verwendeten Salzsäure.

Im oben beschriebenen Versuch wurden 20,00 mL einer HCl-Lösung ($c_{\rm HCl}$ = ... das wird Ihre

Problem D 9 Punkte

Aroma- und Geruchsstoffen im Kaffee auf der Spur

2-Furfurylthiol röstig



Der wohl prominenteste Aromastoff in Kaffee ist 2-Furfurylthiol, welcher unter anderem für die röstige Note verantwortlich ist.

a) Geben Sie die Anzahlen an C- und H-Atomen im 2-Furfurylthiol an.

C- Atome: H-Atome:

A-G der flüchtigen Komponenten wurden mittels ¹H-NMR-Spektroskopie untersucht:

O

$$\bigcap_{\mathbf{D}} \mathbb{H}$$

Kartoffel gekocht

BButter

Butter

malzig

fruchtig-malzig

$$F$$
 G

fruchtig-stechend

Katzenurin-röstig

H

Honig, fruchtig

 $\bigcup_{\mathbf{I}} \mathbf{0}^{\mathsf{H}}$

Honig

Spektrum 1: 1,1 ppm (t, 3H), 2,1 ppm (s, 3H), 2,5 ppm (q, 2H)

Spektrum 2: 0,9 ppm (t, 3H) 1,1 ppm (d, 3H), 1,5 ppm (m, 2H), 2,4 ppm (m, 1H),

9,6 ppm (d, 1H)

Spektrum 3: 2,1 ppm (s, 6H)

Spektrum 4: 1,1 ppm (d, 6H), 2,4 ppm (m, 1H), 9,6 ppm (d, 1H)

Spektrum 5: 1,2 ppm (s, 6H), 1,7 ppm (t, 2H), 4,2 ppm (t, 2H), 5,4 ppm (s, 1H), 8,8 ppm (s, 1H)

Spektrum 6: 2,2 ppm (s, 3H), 2,6 ppm (q, 2H), 2,7 ppm (t, 2H), 9,7 ppm (t, 1H)

Spektrum 7: 1,0 ppm (t, 3H), 2,5 ppm (m, 2H), 9,6 ppm (t, 1H)

b) Ordnen Sie den 1H-NMR-Spektren die richtige Struktur (aus A bis G) zu.							
Spektrum 1: Spektrum 2: Spektrum 3:							
Spektrum 4:	Spektrum 5:	Spektrum 6:					
Spektrum 7:							

c) Benennen Sie **C** und **D** nach IUPAC und geben Sie jeweils die richtige Stoffklasse an.

C

D

d)	Wer bin ich	h? -	Vier	der	Stoffe	A	bis	I stellen	sich	hier	vor.	Ordnen	Sie	den	richtigen
	Buchstaben	zu.													

Duchstaben zu.	
	Buchstabe
Ich bin stolz als einziger Stoff chiral zu sein.	
Hallo! Mein Name ist Ester, werde ich hydrolysiert setze ich Ameisensäure frei. Zudem besitze ich eine Thiolgruppe.	
Meine Struktur wird geschmückt durch eine Thioether- und eine Aldehydgruppe.	
Damascenon mein Name. Ich bin cyclisch, aber dennoch nicht aromatisch.	

e) Das Karamell-Aroma von Kaffee: Zeichnen Sie die Konstitutionsformel von 2-Hydroxy-3,4-dimethylcyclopent-2-enon.

f) Setzen Sie beim folgenden Namen (Struktur dazu links), dem röstig-erdigen Aroma von Kaffee, die richtigen Lokanten ein.

_____ - Ethyl - _____ -dimethylpyrazin

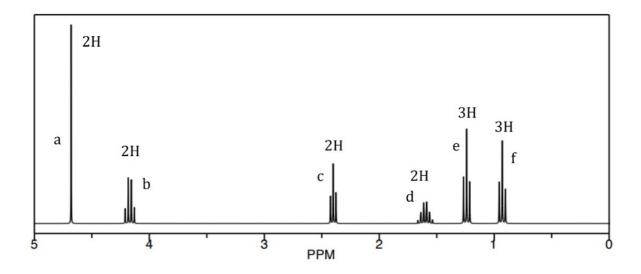
Problem E 15 Punkte

Zwei Synthesen

E.1 Synthese von 1-Cyclohexylethanol

a) Zeichnen Sie die Konfig kennzeichnen Sie das chirai		Torm von 1-Phenylethanol und nchen *.		
b) Kreuzen Sie an, welche Isomerieart(en) zw. der R- und S-Form von 1-Phenylethanol vorliegt/vorliegen.				
☐ Epimerie	☐ Diastereomerie	☐ Stereoisomerie		
☐ Geometrische Isomerie	☐ Enantiomerie	☐ Stellungsisomerie		

Und so macht man das Cyclohexylethanol:


- 1. Phenol **A** (C₆H₆O) wird vollständig zu **B** hydriert.
- 2. **B** wird mit Schwefelsäure behandelt, und es kommt zur Bildung vom Kohlenwasserstoff **C**.
- 3. Wird \mathbf{C} mit einer sauren Chromat-Lösung erwärmt, entsteht \mathbf{D} (Summenformel $C_6H_{10}O$).
- 4. **D** wird mit PBr $_3$ zu **E** umgesetzt. Im Massenspektrum von **E** sieht man zwei Peaks bei 162 u und bei 164 u im Verhältnis \sim 1:1.
- 5. **E** wird mit Magnesium und weiter mit der Verbindung **X** (in Ether) zum 1-Cyclohexylethanol umgesetzt (Grignard-Reaktion).

c) Zeichnen Sie die Konstitutionsformeln von A, B, C, D, E und X.			
A	В	С	
D	Е	Х	

E.2 Synthese von Sildenafil

Der Arzneistoff Sildenafil (ursprünglich gegen Herzbeschwerden entwickelt, aber diesbezüglich wirkungslos) erlangte große Bekanntheit als er 1998 von Pfizer (USA) unter "Viagra" als Abhilfe bei erektiler Dysfunktion auf den Markt kam. Hier geht es um die Synthese.

Vom Ausgangsstoff **A** (vollständiges Reaktionsschema auf der nächsten Seite), $C_9H_{14}O_4$ ist hier ein 1H -NMR gezeigt:

ordnen Sie die Signale a-f den entsprechenden Protonen zu, indem Sie diese Buchstaben dazuschreiben.

d) Zeichnen Sie die Konstitutionsformel von A (C9H14O4, Edukt im Syntheseschema) und

Tipp: Lassen Sie sich bei diesem Reaktionsschema nicht von den großen Strukturen abschrecken. Die Reaktionen sind Ihnen vermutlich wohlbekannt!

A
$$\frac{N_2H_4}{B}$$
 $\frac{+w}{B}$ $\frac{1. \text{NaOH}}{C}$ $\frac{1. \text{NaOH}}{2. \text{HCI}}$ $\frac{d}{d}$ $\frac{+}{E}$ $\frac{1. \text{NaOH}}{2. \text{HCI}}$ $\frac{d}{d}$ $\frac{+}{E}$ $\frac{1. \text{NaOH}}{2. \text{HCI}}$ $\frac{d}{d}$ $\frac{+}{E}$ $\frac{E}{2. \text{HCI}}$ $\frac{d}{d}$ $\frac{e}{2. \text{HCI}}$ $\frac{d}{d}$ $\frac{e}{2. \text{HCI}}$ $\frac{d}{d}$ $\frac{e}{2. \text{HCI}}$ \frac{e}

e) Kreuzen Sie die richtige Aussage zur Aufgabe von N_2H_4 in Reaktion $A \rightarrow B$ an.					
□ reagiert als Nukleophil □ reagiert als Elektrophil □ ist ein Radikal □ fungiert als Katalysator		•			
f) Wählen Sie ein Reagenz w für die Reaktion von $B \rightarrow C$.					
□ CH ₃ Li	□ CH ₃ MgBr	□ (CH ₃) ₂ SO ₄	□ СН₃ОН		

Sildenafil

g) Zeichnen Sie Konstitutionsformeln der Verbindungen d, E, G, H, I, K und Z. Schreiben Sie Summenformeln für Reagenz x (2 Substanzen) und Nebenprodukt m auf.				
d	х	m		
Е	G	Н		
I	K		Z	

h) Nach welchen Reaktionsmechanismen (z.B. A_E für elektrophile Addition) laufen diese Reaktionen ab? Machen Sie jeweils Kreuzchen in die richtige(n) Spalte(n).

	Hydro- lyse	Reduk- tion	SE	Konde n- sation	A_{N}	S_R	S _N	Polyme ri- sation
$C \rightarrow d + E$								
$E \rightarrow F$								
$G \rightarrow H$								
$H \rightarrow I$								
$I \rightarrow K$								